для исходных образцов с большой N_d . Отсюда следует дополнительный вывод: дислокации не играют самостоятельной роли в образовании центра, а действуют лишь как стоки для вакансий.

Наконец, мы приходим к заключению, что при высоких температурах 1/4 полного количества фосфора в кремнии находится в междуузлиях; в ряде случаев фосфор внедрения сохраняется при охлаждении образцов до комнатной температуры. С этой точки зрения большой коэффициент диффузии P в Si (2) обусловлен тем, что фосфор диффундирует по междуузлиям, в отличие от других примесей замещения, диффундирующих по вакансиям. Если увеличить концентрацию вакансий в образце путем пластической деформации, то диффузия фосфора должна замедлиться, так как доля внедренного фосфора, согласно (1), уменьшается. При вакансионном механизме диффузия должна была бы ускориться. Именно такой эффект был обнаружен в работе (³): при динамической деформации кремния диффузия Ga, B, Sb ускорялась, а диффузия Р замедлялась. Другое следствие из существования фосфора внедрения состоит в том, что при легировании кремния только фосфором концентрация электронов *n* должна отличаться от полного содержания фосфора с. Если уровень $E_v + 0.43$ эв акцепторный, то $n = (c - N) - N \approx \frac{1}{2}c$, а если донорный, то $n = c - N \approx \frac{3}{4}c$. По многим литературным источникам (например (10, 12)) п близка к с. Особняком стоят данные работы (1). Всего вероятнее, уровень $E_v + 0,13$ эв является донорным, что согласуется и с данными (6,7) по рекомбинации на этом уровне.

Государственный научно-исследовательский и проектный инсгитут редкометаллической промышленности Поступило З V 1968

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. И. Фистуль, Сильно легированные полупроводники, «Наука», 1967. ² Б. И. Болтакс, Диффузия в полупроводниках, М., 1961. ³ J. Е. Lawrence, Brit. J. Appl. Phys., 18, № 4, 405 (1967). ⁴ Г. И. Воронкова, А. Г. Дудин, М. И. Иглицын, Научн. тр. Гиредмета, 25, 241 (1968). ⁵ G. Ziegler, Zs. Metallkunde, 49, № 9, 491 (1968); в сборн. Зонная плавка, 1966, стр. 64. ⁶ R. H. Glaenzer, C. J. Wolf, J. Appl. Phys., 36, № 7, 2197 (1965). ⁷ Г. Н. Галкин, ФТТ, 2, № 1, 8 (1960). ⁸ G. G. Watkins, J. W. Corbett, Phys. Rev., 134, № 5А, 1359 (1964). ⁹ T. R. Waite, Phys. Rev., 107, № 2, 463 (1957). ¹⁰ В. J. Masters, J. М. Fairfield, J. Appl. Phys., 38, № 8, 3148 (1967). ¹¹ Дж. Дамаск, Дж. Динс, Точечные дефекты в металлах, М., 1966. ¹² R. N. Hall, J. Phys. Chem., 57, № 8, 836 (1953).

Доклады Академин наук СССР 1969. Том 186, № 3

УДК 539.89

ХИМИЯ

N. A. Goryanova SV. Pepova L. G. Khvostantsev H. A. FOPIOHOBA, C. B. HOHOBA, J. F. XBOCTAHLEB

ПОВЕДЕНИЕ CdSiP₂, CdGeP₂, CdSnP₂, ZnSnP₂ ZnGeP₂ И ZnSiP₂ В УСЛОВИЯХ ВЫСОКИХ ДАВЛЕНИЙ И ТЕМПЕРАТУР

(Представлено академиком Л. Ф. Верещагиным 30 XII 1968)

Поведение ряда соединений состава ABC₂ при высоких давлениях и температурах исследовалось различными авторами. Для одной группы этих веществ ($A^{I}B^{III}C_{2}^{VI}$) были обнаружены новые метастабильные фазы со структурой типа α -NaFeO₂ (¹). Вещества другой группы ($A^{II}B^{IV}C_{2}^{V}$, где C - As) разлагаются на $A_{3}^{II}C_{2}^{V} + B^{IV}C^{V} + C_{2}^{V}$ (²).

В настоящей работе исследованы при высоком давлении соединения CdSiP₂, CdGeP₂, CdSnP₂, ZnSnP₂, ZnGeP₂ и ZnSiP₂, кристаллизующиеся в структуре халькопирита.

Работа выполнена на камере высокого давления, сконструрированной в Институте физики высоких давлений АН СССР Верещагиным, Новиковым, Хвостанцевым, позволяющей генерировать давление до 165 кбар. В качестве реперных точек при измерении давления служили полиморфные переходы в Ві (25,4; 26,9; 89,3 кбар), в Ва (59; 144 кбар), в Sn (115 кбар) и Рb (161 кбар). Исходные продукты в виде порошков соответствующих соединений синтезированы в Физико-техническом институте им. А. Ф. Иоффе АН СССР.

Исследуемые вещества помещались в контейнер из BN, находящийся, в свою очередь, в цилиндрическом нагревателе из графита. Конечные продукты изучались рентгенографически, путем съемки дебаеграмм (камера РКД-57, фильтрованное медное излучение).

Установлено, что при давлении 60 кбар и температуре выше 700° $CdSiP_2$ разлагается на Cd и SiP_2. При этом SiP_2 кристаллизуется в структуре типа пирита, что соответствует известным из литературы данным (³⁻⁵) для этого соединения, синтезированного из элементов как при нормальном давлении, так и в условиях высоких давлений и температур. Расчетное изменение удельного объема при реакции разложения (без учета поправки на сжимаемость и тепловое расширение) равно $\Delta V / V_0 = 20\%$, из пикнометрического измерения плотности полученной при разложении смеси (Cd + SiP_2) $\rho_{\partial \phi} = 4.96 \pm 0.02$ г/см³ относительное изменение удельного объема также должно быть равно 20%. Нагревание смеси (Cd + SiP_2) в вакууме при температуре 600° в течение 1 часа приводит к синтезу исходного продукта CdSiP_2.

Для CdGeP₂ при давлении 50 кбар и температуре 900° обнаружена стеклообразная фаза, возникающая и при нормальном давлении при быстром охлаждении из расплава (⁶). При более высоких давлениях, и температуре выше 700° наблюдается разложение CdGeP₂. На дебаеграммах продукта, полученного при давлении 50—70 кбар и температурах выше 700°, наблюдаются линии Cd₃P₂ и черного фосфора, что дает основание предположить, что разложение идет в соответствии с реакцией 3CdGeP₂ \rightarrow Cd₃P₂ + + 3GeP + P (черный) ранее найденной (²) для арсенидов. Плотность полученной смеси, измеренная пикнометрическим методом, $\rho_{\partial \Phi} = 5.2 \pm \pm 0.02$ г/см³, что соответствует изменению удельного объема при разложении на величину $\Delta V = -25.38$ см³/моль, относительное изменение объема составляет 15%.